mech2Foam

mech2Foam is a code that generates the required combustion, thermodynamic, and transported
properties model coefficients for a computational fluid dynamic (CFD) simulation with the model/solver
XiFoam part of the open-source toolbox OpenFOAM [1], [2]. The code is written in the open-source
programming language Python version 3.6 [3], and the output files are suited and tested for OpenFOAM
version 7. Although the code is written for the CFD solver XiFoam, other CFD software that uses the
same input parameters can utilize mech2Foam. This document explains how mech2Foam generates
combustion, thermodynamic, and transported properties model coefficients. The thermodynamic and
transport properties are in the Generating thermophysicalProperties file section, whereas the

combustion properties section documents the generation of the Glilder model/equation coefficient.

Generating thermophysicalProperties file

The thermophysicalProperties file in the XiFoam case folder contains the transport and thermodynamic
properties (model coefficients) and defines how these properties are modeled. There is one mixture
specific and three specie specific parameters needed for simulating inhomogeneous combustion. The
global mixture parameter is the stoichiometric air-fuel mass ratio. Furthermore, the mole weight, NASA
polynomial coefficients, and Sutherland coefficients are the three specie specific parameters. These
parameters are calculated using the open-source package Cantera version 2.4 [4] and a reaction
mechanism/chemical kinetics. As input parameters to mech2Foam, the fuel and oxidizer composition,

the initial pressure (p), temperature (T), and a reaction mechanism are needed.

The thermodynamic parameters can be evaluated directly for the oxidant and the fuel since all species
and concentrations are input values. For the combustion products, the species are not input parameters
and must therefore be calculated. Using the inbuilt equilibrate function in Cantera, the burnt product
species and concentrations can be determined. The fuel and air mixture is equilibrated at constant
pressure and enthalpy to determine the burnt product species at initial input (T,p) conditions. Species
with a mole fraction below 0.001 are removed to reduce the number of species in the product gas. The

species concentration is then normalized before the parameters can be calculated. The function



calculate_burnt_product_gas_composition in the script calculateThermoProperties.py calculates the

stoichiometric air-fuel mass ratio.

For the thermodynamic model Janaf in OpenFOAM, the NASA polynomials [5] are used to calculate
the heat capacity (C,), enthalpy (h), and entropy (s). The NASA polynomials are functions of
temperature, with seven polynomial coefficients. There are two temperature ranges separated by the
minimum, shared/common, and maximum reference temperature. The NASA polynomial equations

are shown below.
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where: C, — specific heat capacity at constant pressure, [J/(mol-K)]; Rs — Universal gas constant,
[J/(mol-K)]; h — enthalpy, [J/mol]; s — entropy, [J/(mol-K)]; T — temperature, [K], as — polynomial
coefficient velocity vector [J/(mol-K)]; ], a1 — polynomial coefficient, [J/(mol-K?)]; a; — polynomial
coefficient, [J/(mol-K®)]; as — polynomial coefficient, [J/(mol-K*)]; as — polynomial coefficient,
[J/(mol-K®)]; as — polynomial coefficient, [J/(mol)]; as — polynomial coefficient, [J/(mol-K)]

As mentioned previously, one of the required inputs to mech2Foam is a reaction mechanism/chemical
kinetics model. The NASA polynomials (Eq. 1 to Eq. 3) are the most common thermodynamic model
used in these reaction mechanisms. Each species in the reaction mechanism has its own set of NASA
polynomial coefficients. In mech2Foam, mole weighted NASA polynomial coefficients are calculated
from the species-specific NASA polynomial coefficient using Eq. 4. The function

calculate_NASApolynomial_coefficients_for_mixture, calculates the mole weighted NASA polynomial

coefficients used in XiFoam.
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Where: ai — mole weighted NASA polynomial coefficient of index i; aix — NASA polynomial coefficient

of index i and specie k; X —mole fraction of specie k; i — polynomial coefficient index; k — species.



Different species may have different reference temperatures, which can cause deviations in
thermodynamic properties in some temperature regions. For different reference temperatures in a
mixture, the species with the highest mole fraction will determine the mixture's reference temperatures.
Suppose a mixture contains species with different reference temperatures. In that case, it will be
documented in the support documentation written alongside the thermophysicalProperties file. If the
minimum reference temperature exceeds 200 K, it is adjusted to 200 K to avoid warnings during

OpenFOAM simulations.

The Sutherland equation is the chosen transport model in this case. The dynamic gas viscosity is

calculated from the Sutherland equation below (Eg. 5) [6].
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where: 1 — dynamic gas viscosity, [Pa-s]; As — Sutherland coefficient; Ts — Sutherland Coefficient; T —

temperature [K]

In the Sutherland equation, two constants need to be curve fitted (As and Ts). The mixture-specific
Sutherland coefficients are fitted to the dynamic viscosities gathered from a Cantera Solution object
generated using the reaction mechanism, initial conditions, and the three species compositions (fuel,
oxidizer, and burntProducts). The temperature range for the viscosity is set to the minimum and
maximum NASA polynomial reference temperatures. The Sutherland coefficients are calculated in the

calculate_sutherland_coefficients_for_gas_mixture function.
Combustion properties— Gulder coefficient

One of the laminar burning velocity (LBV) models in OpenFOAM is the Gulder correlations model [7]

shown in Eq. 6.

T \* g
5o =g () (2 1o
Tref pref

where: Si — laminar burning velocity, [m/s]; ¢ — fuel-air equivalence ratio, [-]; T — temperature, [K]; p —

pressure, [Pa]; w — Gulder coefficient; # — Giilder coefficient; & — Gulder coefficient; Trs — Reference



temperature; a — Gulder coefficient; prer — reference pressure; g — Gilder coefficient, X; — mole fraction

of inert [-]; f — Gllder coefficient

Five coefficients in the Glilder equation needs to be estimated, which is w, #, & a, and . The coefficient
f is set to 2.3, independent of the gas composition. X is the mole fraction of inert that is not part of the
fuel and oxidizer mixture. The Gulder coefficients are fitted in three steps, Eq. 7 to Eg. 9. In the Cantera
package, the routine FreeFlame was used to calculate the LBVs used in the fitting procedure. The
FreeFlame routine solves the governing equation for a 1-D premixed, steady, laminar/planar, adiabatic

flame. The reference pressure and temperature values are 101.3 kPa and 300 Kelvin, respectively.
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where: S — laminar burning velocity, [m/s]; ¢ — fuel-air equivalence ratio, [-]; T — temperature, [K]; p —
pressure, [Pa]; o — Gulder coefficient; # — Giilder coefficient; & — Gulder coefficient; Trt — Reference

temperature; oo — Gulder coefficient; prr — reference pressure; g — Glder coefficient.
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Figure 1. A diagram that illustrates the structure of the mech2Foam code and all the scripts and underlying functions.




